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ABSTRACT

A narrow-groove theory for gas on liquid-lubricated herringbone
thrust bearings is developed by means of two matched asymptotic expansions.
The first expansion, for the film interior, yields a generalized Whipple
equation for the average pressure level. The second expansion, for the
film edges, yields a generalized Muijdermann-Body pressure correction.
Arbitrary transverse groove shape is accommodated by the analysis.

The prognosis for development along present lines of a single
partial differential equation to include first-order groove-width effects,
both in the film interior and at its edges, is very good.
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TABLE OF SYMBOLS
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Z’ Dummy variable, [100].
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7rq Absolute temperature [10].
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W Mapping function, [163].

LA/ Load per groove-ridge cycle, [131].

X Distance along bearing edge, [1]; position in complex
plane, [164].

)/ Distance normal to bearing edge, [1]; position in complex
plane, [164].

# Distance normal to groove-ridge interface, [1]; complex
variable, x + iy.

First-order dimensionless pressure level correction, [25].
Groove angle, [1]. See Fig. 1.

I—Position of groove~-ridge interface.

Groove~ridge wavelength, measured in z-direction, Fig. 1.
Groove-ridge wavelength parameter (small) = Z&/ﬁJ

Non-dimensional distance normal to groove-ridge interface,

2/ . [5].

12 Non~dimensional distance normal to bearing edge, {7&‘= 3944 N
[461].

A_ Modified compressibility number, /4«;‘//9 é/q, U-L/ﬁ_ Cz

[5].
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r
3‘ Amplitude parameter, [67]; dirac delta-function.
€

/1ef{Effective compressibilitv number, [28].

/AV Viscosity, [3].

)f Non-dimensional distance in y-direction, )9/24 , [5].
T  Non-dimensional pressure, /542& , [5]; also, 3.14159..

a Shifted non-dimensional pressure, [44].

4?b Z;l; [7]: also Diagmma function, /72&)//?W(k), [64].
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INTRODUCTION

There is today considerable interest in bearings
employing grooved surfaces. Especially in the case of gas-
lubricated bearings, grooving adds to load-carrying capacity
and can provide improved stability characteristics. New
applications have gquickened interest in the corresponding
theory of operation, and a number of theoretical papers have
appeared in recent years on spiral-groove and herringbone
bearings.

The first satisfactory published theory for grooved-plate

(1) in 1951. He treated both

bearings was that of Whipple
gases and liquids. Parallel-plate geometry was assumed with
straight parallel, rectangular grooving. In the narrow-=groove
limit, Whipple assumed linear pressure development transverse

to the grooving. Then employing the principles of mass and
pressure continuity, he eliminated the short-wavelength pres-
sure ripple in favor of the general change of pressure associat-
ed with a complete grooving cycle (groove-ridge pair). A diff-
erential equation for the average pressure resulted. 1In

effect, for gases the Whipple theory includes the long-range

density changes associated with inlet and outlet pressures,

but invokes local incompressibility across the grooving.

Various investigators explored the consequences of the



Whipple theory, but the next major improvement was that of

(2)

Vohr and Pan in 1963, who adapted the Whipple treatment
to non-parallel plates with curved, non-parallel rectangular
grooving. The vVchr-pPan differential equation substitutes

for the usual Reynolds' eqguation when grooving is present,

and it has been the basis of a number of design studies.

In the narrow-groove limit, the Vohr-pPan treatment be-
comes exacty* but with finite groove-width,deficiencies
appear. The first of these deficiencies arises only with
gases, and is due to the neglect of transverse compressibility
effects. It is manifest in-the-large by the theoretical pre-
diction that, even for gases, the load-carrying capacity of
grooved-surface bearings is always proportional to the speed.
Since this prediction is at variance with usual gas bearing

(3)

performance, Wildmann undertook a study of compressibility
effects on a parallel-plate herringbone with slight sinusoidal
undulations. This particular bearing geometry was chosen be-
cause the only reguired mathematical approximation (beyond

Reynolds equation) is that of a well-accepted expansion in

film-thickness excursion. Wildmann showed that the load capa-

*
Subject, of course, to the validity of Reynolds eguation.




city of the herringbone first rises linearly with speed (as
predicted by Whipple theory), reaches a maximum, and then
diminishes to an asymptotic limit predictable on the assump-
tion that (ph) is constant across the grooving. He also obtain-
ed the limiting expression for straight grooving of arbitrary

depth and transverse section.

The second effect of finite groove-width is that of
correspondingly finite pressure-ripples across the grooving.
(Obviously, at fixed speed, the amplitude of these ripples
tends to zero with groove-width). Compressibility aside,
these finite ripples do not permit accommodation of predicted
pressure distributions to edge boundary-conditions of uniform
ambient pressure, or the like. 1In 1964 Muijdermann(4) and

Booy(s)

showed how, for incompressible lubricants in rectangu-
lar grooving, a correction solution can be found for the
pressure. The addition of this solution to a Whipple-type
solution produces a complete solution capable of satisfying

a constant-pressure edge condition. Both of these authors ob-
tained correction solutions for the case of isolated grooves
(great disparity between groove and ridge film thicknesses),
although Muijdermann offered for less extreme disparities a
correction based largely on heuristic reasoning. Besides

incorporating edge corrections, Muijdermann and Booy validat-

ed Whipple's treatment, as it applies to incompressible

-3 -



flow, by the matching of solutions of Laplace's equation.

In addition, Muidjermann translated his straight parallel-
groove results to spiral-groove geometry by conformal mapping,
and adapted them to gaseous lubricants under conditions of no
flow.

All continuum theories for grooved-surface bearings be-
come incorrect when the molecular mean free-path is commen-
surate with f£ilm thickness. 1In 1968 Hsing and Malanoski(6)
modified the Vohr-Pan theory to incorporate Maxwell's slip
condition, and found deleterious effects on performance with
the light gases, such as helium, neon and hydrogen.

Additional study of local compressibility effects
(across grooving) was made for gas-lubricated herringbone
bearings having rectangular grooving in 1968 by Constantinescu
and Castellif7)Using detailed finite-difference solutions of
the groove-ridge pressure distributions, and an analogy with

step~slider-bearings, they concluded that Whipple's quasi-incom=-

pressible assumption is valid provided (our notation):
2
E/L = (”-2°/~ c?) H/ ") (groove width = ridge width).

They found the condition met in most current applications.
The foregoing references present to this writer's know-
ledge, all the concepts that have been published concerning

basic theory for grooved surfaces in steady-state operation.



Many worthy design studies and experimental investigations
have not been cited because they are not sufficiently rele-
vant to the present work, which is concerned primarily with
extending existing theory.

In the present work, a narrow-groove theory is developed

by unified, consistent expansions in terms of the small parameter:

groove-ridge wavelength _ 4
bearing dimension T L

€=

Just as in Whipple's original studg,parallel—plate thrust~bear-
ing geometry with straight, parallel grooving is assumed, ex-
cept that the grooving may now possess arbitrary transverse
section. An asymptotic expansion valid in the bearing interior
(away from edges) yields Whipple's equation for the trend of
the average pressure level, together with a second relation

for the ripples of pressure induced by individual grooves and
ridges. A second asymptotic expansion, valid only near the
bearing edges, yields expressions for a generalized Muijdermann-
Booy edge correction. When the two asymptotic expansions are
matched, a theory demonstrating first-order effects of groove-

ridge wavelength is obtained.




DEV.LLOPMENT OF DIFF:RENTIAL LQUATIONS

Differential Equation in Skewed Coordinates

Figure 1 is a sketch of a section of the type of
thrust plate to be analyzed. The opposing smooth plate (not
shown) moves in the x-direction with velocity, A Although
rectangular grocves and pads are shown, the groove-land
shapes may have any periodic dependence on "x". The film
shape along the direction of the grooves is constant. ALL

"corrugations" are straight and parallel.

Figure 1 Schematic Diagram of
Groove-Land Pairs

Figure 2 defines the skewed coordinate system in terms

of which it is convenient to perform the analysis. Here:

Z = (y_x'&w/ﬁ)m/a = )/mﬂ~)‘/4m/3 [1]
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Figure 2 Skewed Coordinate System

Corresponding to eq. [l], the derivatives are:

)”“/’m/’ ) ¥ ’9)') éa)J’m/ééan

Reynolds erumation in Cartesian coordinates (x,y) is:

%(Pw’) - ?xg/uP’?;‘: 2)'6 Pﬁf -

Use of egs. [2] converts eg. [3] to:

i 2(pUR) = 9%(6;’{#%_)4- 52(_5#9
+ 2 /36 ?i-'b Coﬁﬂp_/’ 9/’

[4J

Dimensionless variables are now introduced. Thus:



Ry
il
0l

) f'E;' =z 5 g = 751 , €

I
N>

I~

= '%a_ ) AEMA iA——éjz [5]

Note that f' measures distance in terms of the groove-land

wavelength, whereas f'nwasures distance in terms of a prin-

cipal overall bearing dimension, L.

In terms ¢f the new variables, eg. [4] becomes:

_eN 2 (W’H)“" H?T,%{”—Aez‘/ﬁvrgz

7§

’ o 2H
+ € Ao gl v el T

An alternative form to that of eqg. [6] is convenient for

certain operations. It is in terms of 942‘77 . Thus:
;) 3 2 3
_e zﬂﬁ(uﬂ)r ?a_y_g_zm e,}EH a_sb,)

+€ Mﬂ)9H9¢+e (coep) H A

9;94“ 71

Typically, values for 'ﬂ'(k,O) and 7r(}; l) might be
specified, and with H(/'l-f)'—'—" /‘/(j‘) , periodic solutions



for M and /¢ would be sought.

Imposition of Periodicity

Integration of eu. [7] over one groove-land cycle (with

f/ and SL'perlodlc) gives:

/H/%a(f'-{-é(&%ﬁ)ff/‘l?zﬁo( (8]

A second 1ntegratlon gives:

/ {
@ 2 3 2
—EW = 4 [Wdp +e ) [H2Hdp @
A ¢ ST
Here:?%?is the dimensionless mass "throughput” for a groove-

land combination. This fact is verified by noting that the

mass f£lux within the film which takes place in the y-direction,

l,; , is:
V4

/2/»( )?f) = /Z/LRTF{?)+C&/3? )} e

Wwhen put in dimensionless Joim, this eguation becomes:

24/'/" RT L m _ — H39¢+ ___FH PQD [11]
c’pz of

Integration over a cycle identifies:

o

_ 24,4?7—[‘ m, dz [12]
- L f




#n indefinite integration of eqg. [7] ylelds

4 z}p_ _ e 2/l NP mﬂmpd;/

—c ogo) H 2¥ eW)l [// aiﬂc/f L £CG)

[1-]

For’%%’to be pexriodic, it is necessary that:

f _ _c 2/ f//ﬂf—o(f Cd [ [f/z//c/jo[&)

el d j«,u; b 3 fu fH _%4;4;4 /-[lwféf)

The notation fJ = ‘[}{ G{I‘ will be used for brev1ty '
O

New multiply eg. [13] by ‘r-, integrate over a cycle, and
subtract eq. [14]. The function.}?%) is thereby eliminated,

and the result is:

LTJH M;._GQM(H W 44 E4 f(u Hs)JHfI,/de‘Jp
+eCep)fh ) (!——Hju ) dps elcmp)d, f(n uB)JH’Myis‘

- 10 -



This equation, in combination with eg. [2], yields an import-

ant condition which all 1!‘—solutlons must satisfy; ie.,

7= &fHH ANH f:eA(H Hns)fotf)

f(H H3)JH H’/'/Ja(;olﬁ(mg) alf( HH3)H3/L'/0(/)
/co@(a) i J({ 5,5}(“3‘//) H 4‘( Af

[16]

e-Expansion for Bearing Interior

To obtain specific results for/yL, a series expansion

in "e" is proposed. This series should become useful when

the ratio of groove + land width, "/", to the overall bearing

dimension, "L", is small. Thus:
3 bl

’QL—.: %(Q‘T)Jr € z,,b(;k) ¥) + 91‘/1(3‘)%) o [L7]

When this series is inserted into eg. [7], and the coefficients

of the various powers of "e" are enuated, a seguence of par-

tial differential equations is obtained. The first two such

equations are as follows:

%HSQZ//O.—:O [18]

vy
o)
(Ve o



_ NE oH_ 2 70Y (DY
2/ %ED_?__. Xﬂg_j%_}.(m/g)gf(f',ﬁ))

4 (é0¢13) H’ BZhjé

%g%z [L9]
Integration oi eg. [l8] gives:
I'/ 3_.9_‘_‘.._/% _— C((:) [20]
ERY

But in order for /‘/{, to be cyclic, J(}')—‘?O , and

Y= ) N

Ecuation [L9] now reduces to:

_ J JH-3H? Y, ) i’ 22
ZAWEY ZYH 5 +(m@)o%’z_§ [22]

Iifter one integration, this becomes:
2 MNEH = H2% ) dBH + #0123
f;?+( £ 4
imposition of the cyclic condition on @é yields:
HH? 9% _ AL (W) 24N HEHT) 2a
2 = (coa) A (1WA

Then: 3 j"

otk = (coep) A g (W2 g + 2 M Of(iﬁﬁin ‘;P)dy
+ &) (Z ﬂ_—gﬂ;)

- 12 -
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The expressions for‘yé and 94 both contain functions of <
for which the governing equations must be found. Note that

2.

’?é reflects the general level of /) , Whereas @4 shows

some groove-land ripole through its dependence on f .

seroth-Order Interior Differential Ecuation

The zeroth-order condition imposed by eg. [16] is:

A= AR 4 2fcsep) A (F-RIEWE )

+(co’s) 4% 0._ TERTR
dx [26]
This ordinary differential eguation is easily rearranged to

assume the form:

s AT~ P
ZfC«y(a s H* i34

A (w-a,e)(HH"‘ A2
Zm,e+(4w(3)l-l‘g—}
The terminal values of @é at £=0 and = / can be speci-

fied, or various combinations with the fldw,az7
i

where:

[28]

- 13 -



First-Order Interic: Differential Equation

The first-ocrder condition imposed by eq. [l6] is:

_.7);7/ -/ %{;E /{4(&4,/9)3;"{5/(2 +{ﬁ(d(t)@)}2ﬁsﬁ?/
) Lr"% JAAE K eoet ‘fz‘;i—é/(q,toe@)«/%zﬁ(ﬁw“'}}/

b Ko A LT e K A I, 2] )

[29]

+Q:m/a)/l %’l‘@ Kq +(ce=p) % KIJ

Here the various #<§ are constants dependent cn the film-
thickness distribution, F{({) , only; i.e., independent of

/@ . They are iiscted in Appendix A.

Rearrangencnt gives: (with ’/7;:'\/‘71‘; )

7= 2P seole) 2 H fmuo])

%__ﬂj/ [@m{s’)k +(m@) Ks +(mﬁ)ﬁ7+(m?) k"’] )
' 2/L@zﬁ)(“——““3)°‘(*),)

v A de [K +(CO:«_@_)_"+2( )k4+(méz/(] /
dé’ ,43 HJ
4+ AN (%fé_ﬂ% [20]

- 14 -



In this form, the relation for @(¥) is clearly a first-order
inhomogeneous linear differential e.uation with integration
constant,??% (and hence is equivalent to a second-order
ecuation). Boundary conditions on n(; } ares to be determined

through solution of an "edge" problem.

Reduction of the cocefficients in eg. [30] is carried out

in Appendix A. The result is:

A It QFds, (2 H"U T2 W2t
)= Ayt & pag ,I/
7
2Q

et —

.\ -4‘__-4%‘1‘ RFEAt

sy

H-3 °© 7R

[31]

The "Complete" pifferential Equation:

At this point it will be helpful to recapitulate. Recall

that it was convenient to use in mathematical developments

Yo
%+6/¢,—-— T, + 2 emm

the function:

so that:

98}
N
[

)

NE =T, 5 = 2707, f

- 15 -



From eg. [21] it i1is seen that: ==h,(£)and from eq. [27]

it follows that:

dn. _ / __29/: [52]
Iz “ 27 &

Also, from eas. [32] and [25], it is readily found that:

I

)= % F(t) + (_C:/__':_é.) %} GG) +wG) [34]

The differential ea. [31] gives, thrcugh a(JS), the manner
in which the tfirst-order correction tc the general pressure

level propagates across the bearing.

A "complete" differential eguation, implying both [23

and [31] can be derived as follows. From eqg. [34]:

of _—=~77-—-__/_L_ Con ) diis [35]
(x) /) 2 (ﬁé ,,},' G

Insertion in eg. [Z1] gives, after some cancellation and

rearrangement:

j%' (",7;77;) e ;/ A%ﬂo C+ /143‘7/"]( C % [36]

{
Y 1L ) (AP

- 16 -



Now multiply eq. [36] 7 by "e" and add to eq. [33] multiplied

by 77; . Thus:
L(T 1 enT) - Regy Gt e®)— (W + € 7)) /

--€/Z (,)ol’u‘o 4 e_/L_/Zeﬁ C,

A3 H=
J 3 301
Through 0(€), T ,”\‘; ey /77
— 2 — f\ 2
T* = Mot € 27T =(T) [40]

S EE)- Ay T A G Ty Moy G
[41]

FredC) A (Feell) =Ny Trel() )

- —%. + € /__l_:_de:{f [42]

N
N



Finally, with

72?t£5 ;2? —_ G?Z?EI/Qlﬁqﬁf (TC;'- ffséz/)

——————

H 3
* —_
T = T + € /1 Cz
this ejquation reduces to:

fmf' * ¥
HE) = Ny A

Thus it is scen that a modified Whipple eqguation can accurate-

(43]

[44]

[45]

ly account for first-order groove-width effects.

Boundary conditions to which this differential ecuation is

subject will be discussed subsequently.

- 18 -



DEVALOPMENT OF BOUNDARY COIIDITIONS

Edge-Effect Expansion:

Now it should be noted that, at the entrance to the
bearing, <=0 , the deviational pressure #, should be
identically zcro -- a condition that expression [34] mani~
festly cannct meet. Re-examination of the differential
ecuation [7] and the expansion [17] is reguired. Use of the
€-expansion with dependent variables ( r)4£ ) implies that
derivatives in terms of them are of equal order.

However, along £ = the pressure is constant, and
%F: o, %-‘7’—' O . Accordingly, new variables

( ) are used with groove-ridge wavelength A as the mea-
) g

sure of length in both the "g" and "y" directions; i.e.,

7= 3/¢

Equation [6] now becomes:
_ 2 — 2 H% o " o
e/l?f(’/r//) ’Bf'HT’E_f + H97’;7’ )

+ 2 (c:m/e) H;‘%W%T+@np)7%;r/ 8—?3
[46]

The following expansion is now adopted. Thus:

P = 7“@)();7) + € ’/f('}(j',7)4— [47]

- 19 -



To effect asymptotic matching between this expansion and

the earlier one, one writes:

7, )+ € s p) Bl 1)+ € TG54
~ (S ep)rem(es

~ ﬁ;(kiqy 1—65Zﬁ27(k’59_+ 7 é?g; 4 -

[48]
As '7-%»00 , it is necessary that:
7rﬁd(' ) .

$,7) — T(f,0) = 1 [49]

and (¢, 1) — 7 (s, 0)+ /i %_.;Z)b [50]

Now the substitution of series [47] into [W6] gives for

/7'?)1 a linear emuation. Since 77'(0) 0) =1 ana
$)

‘77’(6)(}"3 o) = ] , an obvious solution is: 7-/\@)—_—-_ 1.
)
The differential equation for /M is:

A _ 2™ 2 0" 26mn) K o
3 7?”'5@ ’97H"f (g o2y

) 3

+ (cozB) 97 QH
X 77— S [51]

This is the differential equation for operation with an incom-

- 20 -



pressible fluid, and use of a correction for edge effect

similar to that proposed by Muijdermann can be anticipated.

It is helpful tc introduce a residual deviation,

m z+ ”(S")O)Jr 7%)0

[52]

The function Z; is found to satisfy the following differential

equation (by virtue of eqg. [22])

0= WG+ WP G ) 2

The appropriate boundary conditicns are:

[53]
Z(LO)_—: - ‘7’7(5‘) o)

:__/L - F()- (_g)dﬁ;g‘(g) ()

[54]

and: ?(j-) 7)-—-> O as 7> oo - [55]

Also, of course Z is periodic in j'

Boundary Conditions for the Pressure Correction

It will be observed that o(0) is unknown. However, it
can assume only one value compatible with g = 0 as 7 ~oe, It
is the determinotion of this unique value which provides the
entrance boundary condition for &(0). At the exit, §'= 1,

similar analysis provides 0 (l). The differential equation

- 21 -



[21] connects these two values of "a". For chosen "B" and
: d s

H(I’), ¢ (0) always depends linearly on "/L" and " ZE?"

However, for constant groove and land film thicknesses, the

appropriate expressions are:

Fe)= 2(H A= F2H) 8t (5, v)
GG)= (H-)dt 6,v)

[56]

where </é%F<k))”) is the sawtooth function defined as:

MG ) = ¢ dor 0=f=v¥
_-P)7E for vl g,

36,00= ~ 1k [2A (RH* F7H) )
+lea) 47) (5 F°) 1 41 0) - €/

(58]

In this case it is clear that the effects of speed and flow

3_? is influenced by flow) coalesce.

Exact Solution for Muiijdermann's First Correction

The edge problem cannot ordinarily be solved in closed
form. However, for the special, but very important, case of

constant-depth grooves and constant-height ridges some progress

- 22 -



can be made. Consider first the case of the groove film-
thickness greatly exceeding the ridge film thickness. (First
treated by Muijdermann with the use of an analog computer).
In this case, eq. [53] reduces to Laplaces equation in the

skewed coordinates. Thus:

Py 2 (cee [59]
9?* 2.+ 2 ¢ 'd)?i"l

with 29 _ ol =0 at £ =0 and f = 1, say,
and ?(BO)= —{l-—( +o((0)} ; j.(g',m) =0
Here recognition of the linearity of the problem has lead to

the removal of constants of amplitude.

An entirely equivalent problem is to seek a solution for

if-— ?\; = _;_ , such that ; (;')O) cancels the
ripple functions _é F(S") -+ (C()ﬂ' )d(r; G(Y) of
=

77/'(f) o) . Here, then, ;(f) )'—'—‘ /“f and (X(O):_‘/?:"’

As Muijdermann has pointed out, the asymptotic value of ?ﬁ
need not be the average of ? along the base 7 = 0. However,

hi . o
this result is true for B = > - Thus:

2.

‘/ g';df4— 7/3,0(J‘ (60]
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But f{%?:al{;- 2)__ _9_).—:0 [61]
o) J ’ 95?/ 9? 0
. f?df= A+ B’z [62]
%
But if ?-' %m, B =0 necessarlily
S G = Of}"(f, 0) dy o
The foregoing fact is utilized to obtain a closed-form

solution for Ez.for the system [59]. By conformal mapping,

problem A below is transformed to problem B. Now

PP [

P B
l / / |
- E A_..,_\_. -

u

C u A P—%f

7(0)= (-5) 24,0)= i J{at (@)} du
0

Figure 3 Conformal Transformation

L '_
the average value of Z.(LD) in the (u,?") plane (problem B)

P d

is also g;nin the (u, V) plane. However, both planes possess

PP Pd
the same )ﬁv. The determination of jao is, then, reduced
to a definite integration along ¥ = 0 . Details are given in

Appendix B. The final result is:
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Fom 1= T (Pi-4)-4th) e

where 1#)15 the Digamma function.

For his "2 Fa’", ", Muijdermann plotted 2(2;——2[‘ ).
Figure 4 compares his results with er. [64]. Discrepancies

are, for the most part, slight.

It is easy to see that the "response" as§ -0 to

al§,0) = -¢ is simply — TQ«_’;:_/@(/(//(,._#)_ ,Sj/(i);)

and, therefore;
%o = 724%{(4//(# £)— /W(i)) [65]
it Z(§)0) = f

Numerical Results for Finite Ridge Film Thickness,
Rectangular Grooves

Except for the case of small film--thickness excursions
(nggﬂz), the case of finite ridge-film-thickness has not
proven to be analytically tractable. However, the finite-
element numerical approach developed at the Franklin Institute(8>
has been used to obtain numerical results. For the data pre-

sented in Figure 4 (with Hl/H24=O) the author is much in-

debted to Dr. T.Y. Chu.
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with boundary conditions of the form ﬁhhﬂ applied locally

along the exposed film edges.

In summation, it may be said that a narrow-groove theory
has been developed here for parallel straight grooving of
arbitrary transverse shape with aligned bearing surfaces.

The consequences of the theory are generalizations of Whipple's
analysis for the interior pressure distribution and of the
Muijdermann-Booy analysis for edge effects. The expansion
adopted in this work shows that, for sufficiently narrow
grooves, the variations of density of a gas can be neglected

in distances of the order of one groove width. The expansion
is also wvalid for non-cavitating liquids --- one simply substi-
tutes /A, = (a/v/béaf%)T' for‘"pa" in all expressions, and
(9

retains all terms of numerical conseguence.

There are a number of ways in which the present analysis
can be exploited and extended. 1In particular, future effort
will be devoted to the development of a general partial differ-
ential equation corresponding to eq.El#é], and to the provis-
ion of additional edge-correction information, of which that
depicted in Figs. 4 and 5 is to be regarded simply as repre-

sentative.
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/— Feoray (H,/Hz).o GROOVE , RIDGE
H, H,
. (Hi/Hy)3= .02 &
.| :
X
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X—MUIJDERMANN’S
s ANALOG RESULTS
3 | (I-I;/Hg)i.cu.
az -
J b
L) I0 20 30 40 B0 60 1O 80 90 100

GROOVE AMNMGLE, (3

Fig. 4. Pressure Correction Factors for Edge Effect with
Rectangular Grooving
(Versus Groove Angle)
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©®© FINITE ELEMENT
COMPUTATIONS

X EXACT S/INGLE
GROOVE RESULTS

Q
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8 —0 8=75°
o
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3
Fig. 5. Pressure Correction Factors for Edge Effect with

Rectangular Grooving
(Versus Film-Thickness Ratio)

- P8



If the author interprets Dr. Muijdermann's "second

correction" expression properly, it would give:

—
R—

Hi \?
b (tr) ||

|+ (Ho)?

Although for £ # O this formula gives correct limiting values,

it would appear to be considerably in error for intermediate
values (i.e., for Hl/H2 # 0 and # 1). For example, with

_ o 3 . . _
/6 = 15  and (Hl/Hz) = .06 Figure 4 gives Afﬁmrr“ 0.43,
whereas eqg. [66] gives:

/I— 006
| + 006

APCorr =0 77

The discrepancy in A’%orr is substantial. However, we must
recall that we are concerned here with corrections to the
pressures and load capacities, rather than the principal quan-
tities themselves. Hence discrepancies such as that above
will not introduce equally serious errors in overall predic-
tions of performance.

To corroborate the finite-element results, the data were
cross-plotted as functions of (Hl/HZ)S. Only this parameter

and the groove angle, B, appear in the rectangular groove
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(and ridge) problem. A perturbation treatment in (Hl/Hz)B
would lead to a linear behavior for small values of this
parameter. Figure 5 shows that the computed data do satisfy
this criterion fairly well. Furthermore, in the case of

B = 300, additional points near zero are shown to be tolerably

in accord with the exact result as (Hl/H?)3 -0 .

Perturbation Analysis with Finite Ridge-Film Thickness,
Arbitrary Groove Shape

In the case of small excursions of film thickness, it
is possible to make a complete analysis. For this analysis,
the earlier results of Wildmann for a cosinusoidally-rippled

herringbone are highly suggestive. Suppose that:
H= 1+ 0 £(t) [67]

where g is a small, amplitude parameter and f(§ ) is arbi-

trary except that:

() =£(1 +J') and £(J) = 0. The datum

1

for f' is chosen so that £(0 ) o .

It is readily shown that:

H= 1+ 3+# H= |
H' == 5+ 8 % - iz 14 8 §
H2= | —25F 4+3874% - H2e 1+ 382
H3= | —33F+ 68F% - A3/ +605°

[68]
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i

2[*{83‘4—35({ f)fo(er [69]
a(¢) fzf 3J:F+é5(a‘ f’)fc1§+ © [70]
Aoy - 3(3/1 c“/s)+.~ (711

Also: F(g‘)

i

Reference to ea. [33] shows that, in a no~flow situation,
7§ - 1 = 0( 5 }. Let us confine consideration to cases
where the flow through the bearing is of no greater magnitude
(thereby limiting the degree of external pressurization).

From eq. [34 we then note that:

-/ F(y)+ o (5) + 0(63)

= ..2/l§ffa(§+ 63 f(f F)ds + atr)+ 06

[72]
the residual function 7 must cancel 1ﬁ(h,g) and satisfy the

differential es. [53]:

29 , ¢ 2% 4+ odH/2
95?’ 'a’% + 2 (Goep) a}%f (?“ c”(@
[73]
In the present case,
2«/%// 36 :u[(g') 4 O(3) [74]

af —
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Now adopt the expansion:

;: 3?’(5,.”'7)*' 5272 (f)’?) + ete. [75]

the differential ecuations for ;, and ?z are:

92, a_}/ 2 (e ) a_z/ — O 76]
\ + [
97% 27> g X
and:
Ei%z_+ af-;.#':z(a0ﬁé)£2}z -+ Buf'2<%;g‘ C&%é é%fc)::C)
Bt o X7 ’ ’
[77]
On the supposition that Zs can be represented in the
form zT‘éKf’
A= 0(7) - (78]
we find:
RG) + (k)2 m,@)&'(al)——(mrk)z@(y): O 79
t9 UK pro 8 z’li‘ki(g-_ /7@413)
or: 3, = (const) e e [80]

More generaily, let us take:

£ _ Ikl (¥ dsns) vik(r—
?l= Z/jke Hep 722 K(r 7@#)

K=~00

[81]

- 39 -



2\t7 = o , temporarily let:

f pe ik
9"&(1")5 fa[a(f = ?:'(}-)0)____ ZAkez f [82]

K=-co

The differential equation for 22 is, with the use of eq. [68]

2 2 2, , o - ’{é ?ﬂ’ék{
st agen 0 Sk

[83]

where: ’QLK = 2’”’K’7 ‘{L‘ &94/6 +/d?4u(k)/dhu/€f+ Lﬂﬂw(l‘}lﬁ
[84]
Integration of eg. [83] over a groove-ridge cycle gives:

~_¢ / 2k |
}2?’ = 3W/)ZZT/K/A e ff(;)e df [85]
e © 5 2k
But: £({) =sz'k/’ ezr kr 5 £¢)= Z(mk)/’ke
- 6o ~ o0 [86]

So that:

d 7* = —XM/)Z er/«//l e (zrrJ)A

k=60 J--m

[87]
"%
- — 5'§A“~«)42§T.(213) C}fﬁnJ)/QJA e [88]
” ( )@ - 2‘('&?"“\’)@
"“—"’?“’J - 21y
= =-3( /A)ZQT:’)Q?"J) e 80]

J=-o
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Note that all terms vanish as'?-*oo y

Equation [89] is now integrated twice, with the linear
term in "y" set eual to zero. Then, taking account of the
temporarily omitted "lead constant" on g; , one gets:

_ = i
F(2 = _6/154*““/9)2277’/‘//4'/4-‘,’ e ! + F.(w) [90]

= — ¢ A(pp) [Zoi—m A eﬁé WAKA"E@ /

+ %’z@o) [91]

2,e) = Z,(0) + 6/1.(44‘42/9)20&27rk A A, [92]

On '7= o i
531,00+ 39.(,0) = _2A8F + CASY

¢
where j(;.) s f(;{—fz) J{' [94]

Ox's

Then: ———

71 = “Q/L_Tf:?’(m)} (951
Z0) = 6 AZ—
?77-(«,) = —d(o) = 3%:(0) +81{‘7§:(°)+6/1/“;“2/92—2Wk’4“'4"‘}
™ co ! tes
:—’%‘—Zo) + 6/1_5@%2(3) Z_?JTKAkA-k .
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Further analysis obviates the need for Fourier decompo-

sition. Since
oo

Fir) = ZAK ST [98]

K=—ao

—2mLk(

f Fe  dt 92

— 2%¢ z’nm‘
/»72?5 - /go/t)e [100]
or: 2w k(1-5)
= f/}'[;) F(t) e As 1 [101]
—2mik(1-5)

-//J(S)Jﬁ) e As 47 [102]
— fff(s)of(f) coe 2Tk(5-t) dsd+ (53]
© 0
f (s)f/t){m 2Mks Coa, AMKE + fun- 2TKS fun 27n<z‘j2 dsdt
© O [104]

f\"F(J)C%?TkJ ds ff’(t)a«.?rkl‘ dt ))

ff(s)/u.,,QﬂkJ ds f\?:’/f)/woﬂ"kf At [105]
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f bR ad i f Fry L )

f N /
s f F6) L‘;ﬁ”’z” f}‘(t ) (c:«;:kt) [106]
ala t=0

!
_ szrksf()a[ //Mzrwrf()df,)

(&)

/

/
<oe 2UK S Coe 2Tk 1-
£(s) ds f — ) AT [107]

27Tk

f/f(s) £(t) &= {Zﬂkw £)f Ads AT [108]

[ oo
. vi;—(m) _ 6ACAW2P) Jf;f(s)f-(t)z M{Zﬂk(:-t)} ds olt))

+ %(o) [109]
The series in eq. [109]can be put in closed form with the
use of
R ! } = Coe(nx) . < x< 2T
2 {22/— Coe X) ’

[110]

o 35 =



Thus:

7k (- 5
Z cout? i Zm{ 2 {1— coo 21752 }} frl <!

2K
[111]
.2
= I lw{um #(s—t)} [112]
47
= ! [113]
NZ AinTls-t|

The limits of applicability of the expansion are adequate

for the intervals of integration.

G = T+ 6N Gnzy | ff@f(t) b }dsdt
[114]

Here (InwNz )/2 has been eliminated because f_ﬂf@)féf)JJdt o

vy

Finally:

2 I
L (o) = —'cj(o) 106 A (eim z@)j le(s)aﬂ(t) b pinls-t} dsdt
00 2w

[115]

Special Cases: Sinusoidal and Rectangular Ridge-Groove
Geometries

The foregoing formula permits ready numerical integration

for arbitrary, though small, film-thickness distributions of
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the form: H= 1+ 54G) 3 F04¢) =£6) } [116]
f=+40)=0

However, for two particular distributions, at least, evalua-

tion of a(0) is more readily accomplished directly.

2Ty —2Te
When £ f sz,v —_ _____{ Lf Lr} [117]

the case is that treated by Wildmann. Here:

2'rnf -2 27k
!
E—:( ) 2/2//&/<)/4 e [118]
Or:
AI:A—I=3‘},‘; and Ak::O for [k =1
z;(w) = %V:(O) + A—(;;%)(MZ/A) [119]

If £¢ f) is the repetitive jump function shown below,

it is easy to obtain the desired

i [——_~
1 r_eh

O % H

i(t)= A

Am [2mf]
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result by carrying out in eq. [1()7]a second integration by

parts. Thus:

/f(;) a(Coz(zrrk:) /;L() c(cn(zrkt}/

2TK)*

+ [J[() a{ximém«:) ff/) d/ézr(if)r:i) 1201

J=o

Since f(o0) = £(1) = o,
I
Ad —~ | b sl ds ] Cos (4Tct) {12) A

o @rk)* @mk)*

/
4 fM(szJ) \7{/6‘) ds /Jwvé//kt);l&) a[i’

Tk )™ g @m* [121]

. + -
The derivative f£'({) is zero except at { =0, 5 and 1,

1 N=

where it has the values S(O*) R —-28&) and (5(1 ) respect-
ively.

AA, =

- K

(2~ 2 csatry )(2— 2 coa(nv) )

[122]

&rrk)‘*
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Then: ?:(w) éﬂ' (’4""" 2/3) 24(/_, M‘Wk) + g (c) [123]

@wrx)’

- 2t

k=1,3,5"

}@wzf«) £ o) i)

For both of the special cases just treated, ’g;_(o)‘—‘ O
In fact, this result holds for any f(K‘) satisfying the condi-
tions in eg. [116 ] and anti-symmetric about f = 1/2. Thus

(by eq. {72]):

Z (o) = e/Lff(f(w ) drde - é/tf(c <) f)dy)

Il

¢ fi(fz ) dr +¢ /U(i V=P de .

The first integral obviously vanishes. In the second integral,
2

we note that if "f" is antisymmetric about f'= 1/2, J:“‘i =

is symmetric and the integral vanishes. Consequently, the

asserted result is proved, and, in such cases:

/
76 — —2A8[01)4d¢ =

Load Capacities With Slight Grooving:

It is now possible to write a general expression for the

load~carrying capacity of any herringbone thrust plate having
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the film-thickness distribution given in eq. [671. For zero

flow, with /le = 0 g ), it is observed that eg. [31l] gives:

f+
= O[J ?) [127]

Hence a (%) is sensibly constant.

e 2 NF L6 NG+ () [126]
) !
= 3/ (e2p) 52[[!0)1’&)%«%77'/%{/}2 ds dt
" ©o 229]

Very directly, as well:

a= 14 /leffé’ = 14_ 51(5/1 Co@/)}—;¥ [130]
o W= f(vr l)ol:)

= 3 5/1 Cozp 4 363 AQ,WQF)[LL(S)IG}L{AMW[&-HJ? ds dt
31

Or:

_ 3 (Co«z/a)f’ +2 efmﬁ(i)fﬂ@)ﬂi)@wv(s 2)| dsdt
A > 32
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SUMMARY AND DISCUSSION OF RESULTS

The analysis required to reach useful conclusions has
been fairly extensive, so it will be helpful to assemble the

principal results in one place, and to discuss them thereafter.

wWhen the film thickness function is H(i‘), an expansion

in the form W= (5 x)+ ™ (§,¥) leads to:
(a) .

di/h == /t - 2

A3 eff zl’Z_*m Z [133]
with

‘ —— 13y

and with Q, a film-thickness integral and 7%& , the seroth-

order mass throughput.

In addition:
(b)

= {4 F) 4 enf dB GGy +als)
H* H? A% [135]

Here the film-thickness terms in curly brackets contribute the
pressure ‘ripple'", and a(:{) provides a correction to the general

pressure level. <1(€W is found from the differential equation:
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43 EN b 2& &
‘ o
y Ay JREAS Y, 134
H-2 C 4 26,

The first-order correction to the mass flow,(7na, is either
specified, or found through satisfaction of boundary conditions

for a(0) and a(l).

Reconciliation of the “lio ,'”. expansion with boundary
conditions of constant pressure involves solution of an edge

problem in the variables (’7)r )

Z H ’3?:*% H ,g? +2(mé)%%§;;+(0&(5)%?%€=0
[137]

(c)

with

FG0= {LF6)+ cxg d G
o e o3 i34
(;Z\: - constant fs Tl—' 0) - Egm.
The constant & (0) equals "3§£
For the case of rectangular grooves and ridges (or loads),

Yy
numerical results for 2(2&0— 1/2) have been obtained (See Figs.

4 & 5).
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A small perturbation analysis in <y , When
/7[:: 1 + J f(f') , yields the following general result

for the load-carrying capacity of a herringbone thrust bearing.

Thus :

(d)

I
e w2 s £ d So A [5-E dsdt

%(c&/g)__e(o.ﬂv)@?{g)) 1G5 )=Az pm il g

%(mﬁ)—-e(o.%é)(Mﬁﬂ); G)= —Vi-’:”—f% )

I

It is possible to define a shifted mean pressure

© 77'*_.--77:4»6/1(;
e

which is correct through O0(e) and which obeys a generalized

Whipple equation. Thus:

dr* _ Aeff — —%—f ELHQJ

Az 2m*e
with: ?)zt'—— 772“ € 2&—/142‘/‘/ (‘;g——% —_ C;) s3]

*-
Typically, T satisfies homogeneous boundary conditions of the

form:
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f
T = KIT;Mb + € [Con.t’lf‘ A + ('O”JZL —g?(?—; + Cohd’tj [:thﬂ

Equation{igilis precisely in the form given by Whipple,
but obtained in this report by a systematic expansion process
that permits successive refinement of the pressure distribution.
The expression for the effective lambda is noteworthy in that
it is valid for arbitrary H(g‘). No generality is lost in
taking E = 1 (tantamount to selecting “¢"). Therefore, it is
seen that three parameters totally determine the major contribu-

tion to the load, %, . These are:

-2 -
H , H and H3

When the excursion of H((}) from unity is everywhere
small (i.e., /g-f(f')/ <<j ,/le](reduces to:

and only one parameter, the rms deviation 3’{?2, influences
the major pumping action. Incidentally, this result provides a
proof of the fact that the pressure-augmentation in herringbone
bearings is of second order in the film-thickness deviation.
Also, relative insensitivity to the character of the groove

and ridge shape can be inferred.

Under conditions of no flow:
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g, = 1+ /ZC:H £ [1ue]

and the Whipple linear pressure profile is obtained. The
optimum groove angle for pressure generation is found by
nothing that /1 is proportional to /h@ﬁ and differentiating
eq. B&H]o The optimum angle must satisfy the following egua-

tion:

e = == 7

and is seen to depend on a sin gle film-thickness parameter,

regardless of film shape. The fact that /this less than 45° for

all film shapes is guaranteed by Schwarz's inequality. Thus:

, 3 N : -
UHB/’H”’*Ag] < (!H?a(;) ((Hdy) a4

EVER VR
so that: r43 r‘ = 1 Bhil

and the rhs of eq. ﬁﬁ?ﬂ is always less than, or equal to,

unity.

The foregoing discussion has concerned the seroth-order
pressure, ﬁ: . This dominant pressure term is "smooth" in the
single independent variable, Z . Of next importance to 7h§,
is the first-order pressure correction, 77 (f;:x) . For the
special case of rectangular groove-ridge geometry, both

"ripple” functions F(§ ) and G(j’) become the saw-tooth func-~
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tion, i.e., the transverse pressure profiles become linear,
as assumed by Whipple and others. However, for other geome-

tries, the profiles are not linear, and do not become linear

as € 0 .

The differential equation for the a( & )-term of
ﬂ’(§"§ ) is linear, but gquite complicated. However, in the

case of no flow, it simplifies as follows.

u, 3{%_::-/4./23f¥iﬁ<; ﬁ5fﬁ

| / | f
_ 1 [JREAS_ JaEdt o Gl ihd
where R ?‘T—g [o ﬁ ;&b—: %ﬂof O Ij.
151
o og= MK bli4 Ayps) + «(0) b5

(< -}

Here the general case shows a logarithmic behavior in /1 .

However, the important case of rectangular geometry again is
exceptional, since, as shown in Appendix C, J</= 0. Whereupon

a(z) = a(0) = constant.

Equations [13'7] and [138] set the problem for a residual
function, E; , permitting asymptotic matching between the
interior first-order ripple function, 77'(fpf), and boundary
condition of ambient pressure, which requires all ripples to

be absent. This problem is to be regarded only as typical of

those that can arise at bearing edges. It is, however, a general-
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ization of Muijdermann's edge-effect treatment, extended by

the present analysis to bearings with compressible fluid and
variable groove geometry. Terminal values of n(‘g) are provid-
ed by residual i;~functions. These values are joined by solu-
tions of the a-differential equation --- non-constant solutions
except in special circumstances.

A important exception is that of rectangular grooving

at no flow.

The load-carrying capacity of herringbone thrust plates
with shallow modulations is given by eq. Djﬁﬂ. This general
result can be used to explore the effects of variations of
the type of grooving, although if the two particular cases
cited are indicative, the edge effects for a given rms film
thickness excursion will be insensitive to shape. Note that
the edge effect with sinusoidal grooving is just 17.5% greater

than for rectangular.

Finally, the "complete" differential equation given by
eq. Dﬁéﬂ is to be noted. The fact that, for H = H(|) = H(/#-f),
zero and first-order effects can be incorporated in a single
ordinary differential eguation gives one reason to hope that a
generalization to near-periodic film thicknesses and curved
grooving may perhaps be possible by means of a single partial

differential equation of the type obtained by Vohr and Pan,
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APPENDIX A

FILM-THICKNESS INTEGRALS

¢
petine:  FG)= 2 Of(ﬁ%‘f-‘i-nfém d¢ f5]
S
GG)= [(H= ) d¢ [154]
O
&(;)E H=H® 4 mzp (I——FF’H’) [157]
RG)= W*-HH [i5¢]

Then:

4’ AN F(§)+(Co¢{e)¢3/’ GG+ zH’a(x)'\/_[;ﬂ
K,= OfH Fdy K= (gH G d
f‘RFdf o= f’f%o‘f
f@m JH Fdgds K= | 6 *3) Fdp
K, = f(' HR 3)Gd; Ky = f(' HH-‘*’Ms

f Ct) f WGy K, - IG(;)JH G )dc ds

13
Consider the grouping KS + H szhich appears in the

coefficient of QLEQ in eqg. [30]. Thus:
AS®
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r
With "‘—: fH H>d [558]
O
this equation becomes:

!
Ko+ Pk = J(6F+6F)ds= GOFO)- G(O)f;(o)]: o
© 159

Now consider the grouping:

/
- f@/—HHJ}(f+ c;f{l HHJ;‘J;)OQ
) [ed]

= 0 by similar arguments.

Therefore, the coefficient of JA% vanishes identically.

Az>

The coefficient of A%{ﬁv is:
[fF*K+m7e{lQ r 2K+ K}]
[f/—l HeF ds + Coﬂ«ﬁf(l* H°)Falg‘+)
m/a{szGdf+2fG(s)f(H HHJ)AM]

[fam +2 codp f(H J)J(H Hz)ds‘dﬂ
[e1]

-

H

/1qﬁf = — /q-(égff)?é' Eéé‘
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APPENDIX B

5> INGLE-GROOVE EDGE CORRECTION

The mapping function
Z L .
. %—I NE = 4/6 .
W = /4‘;-1/(,3 /—z (-Z—l) e Jz = /--f'+‘? @.63]
O

converts the real axis of the s-plane into the form shown

below in the w-plane

Avj
)’———a-
®
v
X
1
l{'}\
o

A
0 1 x— 0 1 (1=¢)
%-—Plane w-plane

=x+t‘)/ w_.:(q-§)+zol

When g = J

I

we take ""_r = U 7 = U

Along y = c

2
T - x

(e

X %§~I _ éi
/—~r=.~/4_»'_7:fofx (1-x) odx; u=

Now in the (u)1r) plane
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i 67
[Note: %-‘—‘ '-i‘].
2z
Next let = 1 ‘ = ] _X_ g
ext le X '4.1_—2 5 t X E.6o]
then:

-

oo 2 /
— 2 () -1 2 dt
b= 1— %ﬁofﬁw ®) I+t* bed

: -1 ) . .
Write tan ~ (t) in the following integral form. Thus:

- ds
TM I(‘t) = p |4 13s* [17@
L (27 dt
o _ _ Z2(m
?ao 1 %ﬂ) M%) (1+ 3 b7l
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Resolution into partial fractions gives:

2

3= f f{(v— ‘)(t+t‘) = Tl?— ' dgiﬁ

Use is made of the infinite integral

AT WG KC)

J ()" [(m+n) .

and the reflection formula for the Gamma function:

[7(n) P(I-n) == /M:T(Jﬂ'"') b4

Then:

7 (/—-5)4 , m= |- 28
= 1 — §
?ao f(#—é) @75]

The above definite integral converges, but not with
m
the terms 1, § treated separately. Accordingly, the behav-
ior of an integral with the denominator "shaded" to

2 ':p
(I—— S ) 2 will first be examined.

R

0('— s¥) = 6]

_orey | ré) _op(E)
2 C"‘ Fz. [1(#2' lM:l
f7Ad
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Let @ = h+/ , and examine "I" as 6 = 0.
2,

I= L ol [ e+ ")~ P22 ro+4)
2 rerhrere)l &

E7¢]

1 L rertE) F(’—"i-’)n’(é)]
= re)ry)
174

Hence:

zia R t‘!‘:@ r'(' %) f’(‘L [ed
g T P(-2) re)

{— Tout Ja(I—8) - P} ped
More conveniently for computation:

go= 1 - Tt {96-4) -9 g |
sl
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ATPENDIX C
SPECIAL RELATIONS FOR RECTANGULAR GROOVING

Important simplifications occur in the film-thickness
integrals for rectangular grooving; i. e., for grooving such

that:
H(f)-—-H,)' 0= ¢ =V } [183]
HG)=H, ; r< | =1

Consider the integral:

I —
Fe= 2 (P PR o
For O<f{=/r: P
FG)= 2 (H'H*- IPH) ¢ [185]

But also, beyond "y", F(}) is linear in "[", decreasing to

zero at { = 1. Therefore, for »=< (= /.

F(s) = 2(HPH = FPH) v - 2 (HH= ) r ((%")) fisd]

(T ) (g £
For all "$ ", then: .
FG) = 2(HPHF - H>H) 8¢, 7) fied
where,A&f(f,V) is the saw-tooth function depicted below.
1.
fr R
Y
A
5
0 j ;' 1

- 55 -



Similarly,
?(y): (W~ 3) 4t (¢, v) f8q]
oSO H2) dy = (A= H7) 4t 6, 7) fod]
Now it is important to observe that if f({) is any
function with constant (though possibly different) wvalues
in the two intervals o=¢<Vr , r<=f=1
integration against /,(f(f,)’) yields V?/Z-

/
< Jards = Q) 2R~ FH7) 2, ete. o

/
In particular: ofﬁFo(s" = o/& Fd¢ [L92]
2R 2@
and: / ¢
/(H‘J__ /F?) f(//-z_//d) O(fa[f' = Q0 E93]
o o
Hence "A" defined in eq. 151 1s zero.
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